Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.

Identifieur interne : 002F22 ( Main/Exploration ); précédent : 002F21; suivant : 002F23

Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.

Auteurs : Ruiqin Zhong [États-Unis] ; Ryan L. Mccarthy ; Chanhui Lee ; Zheng-Hua Ye

Source :

RBID : pubmed:21908685

Descripteurs français

English descriptors

Abstract

Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcription factors (PtrWNDs) are master switches activating a suite of downstream transcription factors, and together, they are involved in the coordinated regulation of secondary wall biosynthesis during wood formation. We show that transgenic poplar plants with dominant repression of PtrWNDs functions exhibit a drastic reduction in secondary wall thickening in woody cells, and those with PtrWND overexpression result in ectopic deposition of secondary walls. Analysis of PtrWND2B overexpressors revealed up-regulation of the expression of a number of wood-associated transcription factors, the promoters of which were also activated by PtrWND6B and the Eucalyptus EgWND1. Transactivation analysis and electrophoretic mobility shift assay demonstrated that PtrWNDs and EgWND1 activated gene expression through direct binding to the secondary wall NAC-binding elements, which are present in the promoters of several wood-associated transcription factors and a number of genes involved in secondary wall biosynthesis and modification. The WND-regulated transcription factors PtrNAC150, PtrNAC156, PtrNAC157, PtrMYB18, PtrMYB74, PtrMYB75, PtrMYB121, PtrMYB128, PtrZF1, and PtrGATA8 were able to activate the promoter activities of the biosynthetic genes for all three major wood components. Our study has uncovered that the WND master switches together with a battery of their downstream transcription factors form a transcriptional network controlling secondary wall biosynthesis during wood formation.

DOI: 10.1104/pp.111.181354
PubMed: 21908685
PubMed Central: PMC3252164


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.</title>
<author>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, Georgia 30602</wicri:regionArea>
<wicri:noRegion>Georgia 30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mccarthy, Ryan L" sort="Mccarthy, Ryan L" uniqKey="Mccarthy R" first="Ryan L" last="Mccarthy">Ryan L. Mccarthy</name>
</author>
<author>
<name sortKey="Lee, Chanhui" sort="Lee, Chanhui" uniqKey="Lee C" first="Chanhui" last="Lee">Chanhui Lee</name>
</author>
<author>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21908685</idno>
<idno type="pmid">21908685</idno>
<idno type="doi">10.1104/pp.111.181354</idno>
<idno type="pmc">PMC3252164</idno>
<idno type="wicri:Area/Main/Corpus">002C98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C98</idno>
<idno type="wicri:Area/Main/Curation">002C98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C98</idno>
<idno type="wicri:Area/Main/Exploration">002C98</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.</title>
<author>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, Georgia 30602</wicri:regionArea>
<wicri:noRegion>Georgia 30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mccarthy, Ryan L" sort="Mccarthy, Ryan L" uniqKey="Mccarthy R" first="Ryan L" last="Mccarthy">Ryan L. Mccarthy</name>
</author>
<author>
<name sortKey="Lee, Chanhui" sort="Lee, Chanhui" uniqKey="Lee C" first="Chanhui" last="Lee">Chanhui Lee</name>
</author>
<author>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apoptosis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Cell Wall (genetics)</term>
<term>Cell Wall (metabolism)</term>
<term>Cell Wall (ultrastructure)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (genetics)</term>
<term>Genes, Dominant (genetics)</term>
<term>Genes, Plant (genetics)</term>
<term>Models, Genetic (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (cytology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Up-Regulation (genetics)</term>
<term>Wood (cytology)</term>
<term>Wood (genetics)</term>
<term>Wood (growth & development)</term>
<term>Wood (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apoptose (génétique)</term>
<term>Bois (croissance et développement)</term>
<term>Bois (cytologie)</term>
<term>Bois (génétique)</term>
<term>Bois (ultrastructure)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gènes de plante (génétique)</term>
<term>Gènes dominants (génétique)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Paroi cellulaire (génétique)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Paroi cellulaire (ultrastructure)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (cytologie)</term>
<term>Populus (génétique)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation positive (génétique)</term>
<term>Réseaux de régulation génique (génétique)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Apoptosis</term>
<term>Cell Wall</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Dominant</term>
<term>Genes, Plant</term>
<term>Populus</term>
<term>Up-Regulation</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Apoptose</term>
<term>Bois</term>
<term>Gènes de plante</term>
<term>Gènes dominants</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Régulation positive</term>
<term>Réseaux de régulation génique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Plant Proteins</term>
<term>Repressor Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Paroi cellulaire</term>
<term>Protéines de répression</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Cell Wall</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Gene Expression Regulation, Plant</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Plants, Genetically Modified</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Binding</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Bois</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Modèles génétiques</term>
<term>Paroi cellulaire</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sites de fixation</term>
<term>Séquence nucléotidique</term>
<term>Transcription génétique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcription factors (PtrWNDs) are master switches activating a suite of downstream transcription factors, and together, they are involved in the coordinated regulation of secondary wall biosynthesis during wood formation. We show that transgenic poplar plants with dominant repression of PtrWNDs functions exhibit a drastic reduction in secondary wall thickening in woody cells, and those with PtrWND overexpression result in ectopic deposition of secondary walls. Analysis of PtrWND2B overexpressors revealed up-regulation of the expression of a number of wood-associated transcription factors, the promoters of which were also activated by PtrWND6B and the Eucalyptus EgWND1. Transactivation analysis and electrophoretic mobility shift assay demonstrated that PtrWNDs and EgWND1 activated gene expression through direct binding to the secondary wall NAC-binding elements, which are present in the promoters of several wood-associated transcription factors and a number of genes involved in secondary wall biosynthesis and modification. The WND-regulated transcription factors PtrNAC150, PtrNAC156, PtrNAC157, PtrMYB18, PtrMYB74, PtrMYB75, PtrMYB121, PtrMYB128, PtrZF1, and PtrGATA8 were able to activate the promoter activities of the biosynthetic genes for all three major wood components. Our study has uncovered that the WND master switches together with a battery of their downstream transcription factors form a transcriptional network controlling secondary wall biosynthesis during wood formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21908685</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>157</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>1452-68</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.111.181354</ELocationID>
<Abstract>
<AbstractText>Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcription factors (PtrWNDs) are master switches activating a suite of downstream transcription factors, and together, they are involved in the coordinated regulation of secondary wall biosynthesis during wood formation. We show that transgenic poplar plants with dominant repression of PtrWNDs functions exhibit a drastic reduction in secondary wall thickening in woody cells, and those with PtrWND overexpression result in ectopic deposition of secondary walls. Analysis of PtrWND2B overexpressors revealed up-regulation of the expression of a number of wood-associated transcription factors, the promoters of which were also activated by PtrWND6B and the Eucalyptus EgWND1. Transactivation analysis and electrophoretic mobility shift assay demonstrated that PtrWNDs and EgWND1 activated gene expression through direct binding to the secondary wall NAC-binding elements, which are present in the promoters of several wood-associated transcription factors and a number of genes involved in secondary wall biosynthesis and modification. The WND-regulated transcription factors PtrNAC150, PtrNAC156, PtrNAC157, PtrMYB18, PtrMYB74, PtrMYB75, PtrMYB121, PtrMYB128, PtrZF1, and PtrGATA8 were able to activate the promoter activities of the biosynthetic genes for all three major wood components. Our study has uncovered that the WND master switches together with a battery of their downstream transcription factors form a transcriptional network controlling secondary wall biosynthesis during wood formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Ruiqin</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCarthy</LastName>
<ForeName>Ryan L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Chanhui</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Zheng-Hua</ForeName>
<Initials>ZH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005799" MajorTopicYN="N">Genes, Dominant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21908685</ArticleId>
<ArticleId IdType="pii">pp.111.181354</ArticleId>
<ArticleId IdType="doi">10.1104/pp.111.181354</ArticleId>
<ArticleId IdType="pmc">PMC3252164</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 2004 Jun 9;334:73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):549-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9855-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11139577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jul;232(2):337-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20458494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):144-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Aug 13;321(1):172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Nov;4(11):1028-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19838072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1214-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Aug;43(4):553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Nov;50(11):1950-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1466-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jun;50(6):1075-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):270-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Sep;56(2):255-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Nov;3(6):1087-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(14):3925-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):766-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Histochem Cytochem. 2005 Apr;53(4):543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Nov;15(11):625-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jun;51(6):1084-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):563-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3390-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stain Technol. 1975 Sep;50(5):319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">54956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1674-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Aug 15;19(16):1855-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Aug;46(8):1213-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:165-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2763-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Jul;4(4):730-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21596688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Nov;53(4):597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2993-3006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Dec;10(6):564-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17950657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 May;48(5):689-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Apr;5(4):469-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383071</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lee, Chanhui" sort="Lee, Chanhui" uniqKey="Lee C" first="Chanhui" last="Lee">Chanhui Lee</name>
<name sortKey="Mccarthy, Ryan L" sort="Mccarthy, Ryan L" uniqKey="Mccarthy R" first="Ryan L" last="Mccarthy">Ryan L. Mccarthy</name>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21908685
   |texte=   Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21908685" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020